The book contains a review of battery design and: Discusses electrochemistry of Li-S batteries and the analytical techniques used to study Li-S batteries Offers information on the application of Li-S batteries for commercial use Distills ...
More Books:
Language: en
Pages: 336
Pages: 336
A guide to lithium sulfur batteries that explores their materials, electrochemical mechanisms and modelling and includes recent scientific developments Lithium Sulfur Batteries (Li-S) offers a comprehensive examination of Li-S batteries from the viewpoint of the materials used in their construction, the underlying electrochemical mechanisms and how this translates into the
Language: en
Pages:
Pages:
This book presents the latest advances in rechargeable lithium-sulfur (Li-S) batteries and provides a guide for future developments in this field. Novel electrode compositions and architectures as well as innovative cell designs are needed to make Li-S technology practically viable. Nowadays, several challenges still persist, such as the shuttle of
Language: en
Pages: 708
Pages: 708
Lithium-Sulfur Batteries: Materials, Challenges, and Applications presents the advantages of lithium-sulfur batteries, such as high theoretical capacity, low cost, and stability, while also addressing some of the existing challenges. Some of the challenges are low electrical conductivity, the possible reaction of sulfur with lithium to form a soluble lithium salt,
Language: en
Pages: 352
Pages: 352
A guide to lithium sulfur batteries that explores their materials, electrochemical mechanisms and modelling and includes recent scientific developments Lithium Sulfur Batteries (Li-S) offers a comprehensive examination of Li-S batteries from the viewpoint of the materials used in their construction, the underlying electrochemical mechanisms and how this translates into the
Language: en
Pages:
Pages:
The emerging applications of electric vehicles (EV) and grid scale energy storage are pushing the limit of energy storage technologies. To meet the US Department of Energy (DOE)'s targets for EV batteries and grid storage, battery chemistries beyond the current lithium ion systems are required. Among the many new chemistries